Automorphic Lie algebras and corresponding integrable systems
نویسندگان
چکیده
We study automorphic Lie algebras and their applications to integrable systems. Automorphic are a natural generalisation of celebrated Kac-Moody the case when group automorphisms is not cyclic. They infinite dimensional almost graded. formulate concept graded isomorphism classify s l ( 2 , C ) based corresponding all finite reduction groups. show that hierarchies systems, Lax representations master symmetries can be naturally formulated in terms algebras.
منابع مشابه
Reduction Groups and Automorphic Lie Algebras
We study a new class of infinite dimensional Lie algebras, which has important applications to the theory of integrable equations. The construction of these algebras is very similar to the one for automorphic functions and this motivates the name automorphic Lie algebras. For automorphic Lie algebras we present bases in which they are quasigraded and all structure constants can be written out e...
متن کاملAutomorphic Lie Algebras with Dihedral Symmetry
Automorphic Lie Algebras are interesting because of their fundamental nature and their role in our understanding of symmetry. Particularly crucial is their description and classification as it allows us to understand and apply them in different contexts, from mathematics to physical sciences. While the problem of classification of Automorphic Lie Algebras with dihedral symmetry was already cons...
متن کاملTableaux over Lie algebras, integrable systems and classical surface theory
Starting from suitable tableaux over finite dimensional Lie algebras, we provide a scheme for producing involutive linear Pfaffian systems related to various classes of submanifolds in homogeneous spaces which constitute integrable systems. These include isothermic surfaces, Willmore surfaces, and other classical soliton surfaces. Completely integrable equations such as the G/G0-system of Terng...
متن کاملOn the Classification of Automorphic Lie Algebras
It is shown that the problem of reduction can be formulated in a uniform way using the theory of invariants. This provides a powerful tool of analysis and it opens the road to new applications of these algebras, beyond the context of integrable systems. Moreover, it is proven that sl2(C)–Automorphic Lie Algebras associated to the icosahedral group I, the octahedral group O, the tetrahedral grou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Differential Geometry and Its Applications
سال: 2021
ISSN: ['1872-6984', '0926-2245']
DOI: https://doi.org/10.1016/j.difgeo.2020.101710